MucA-mediated coordination of type III secretion and alginate synthesis in Pseudomonas aeruginosa.

نویسندگان

  • Weihui Wu
  • Hassan Badrane
  • Shiwani Arora
  • Henry V Baker
  • Shouguang Jin
چکیده

The type III secretion system (T3SS) of Pseudomonas aeruginosa is an important virulence factor. The T3SS of P. aeruginosa can be induced by a low calcium signal or upon direct contact with the host cells. The exact pathway of signal sensing and T3SS activation is not clear. By screening a transposon insertion mutant library of the PAK strain, mutation in the mucA gene was found to cause repression of T3SS expression under both type III-inducing and -noninducing conditions. Mutation in the mucA gene is known to cause alginate overproduction, resulting in a mucoid phenotype. Alginate production responds to various environmental stresses and plays a protective role for P. aeruginosa. Comparison of global gene expression of mucA mutant and wild-type PAK under T3SS-inducing conditions confirmed the down regulation of T3SS genes and up regulation of genes involved in alginate biosynthesis. Further analysis indicated that the repression of T3SS in the mucA mutant was AlgU and AlgR dependent, as double mutants mucA/algU and mucA/algR showed normal type III expression. An algR::Gm mutant showed a higher level of type III expression, while overexpression of the algR gene inhibited type III gene expression; thus, it seems that the AlgR-regulated product inhibits the expression of the T3SS genes. It is likely that P. aeruginosa has evolved tight regulatory networks to turn off the energy-expensive T3SS when striving for survival under environmental stresses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pseudomonas aeruginosa sensor kinase KinB negatively controls alginate production through AlgW-dependent MucA proteolysis.

Mucoidy, or overproduction of the exopolysaccharide known as alginate, in Pseudomonas aeruginosa is a poor prognosticator for lung infections in cystic fibrosis. Mutation of the anti-sigma factor MucA is a well-accepted mechanism for mucoid conversion. However, certain clinical mucoid strains of P. aeruginosa have a wild-type (wt) mucA. Here, we describe a loss-of-function mutation in kinB that...

متن کامل

Pseudomonas aeruginosa in cystic fibrosis: role of mucC in the regulation of alginate production and stress sensitivity.

Alginate production in Pseudomonas aeruginosa and the associated mucoid phenotype of isolates from cystic fibrosis patients are under the control of the algU mucABCD cluster. This group of genes encodes AlgU, the P. aeruginosa equivalent of the extreme heat shock sigma factor sigma E in Gram-negative bacteria, the AlgU-cognate anti-sigma factor MucA, the periplasmic protein MucB and a serine pr...

متن کامل

Overexpression of CupB5 activates alginate overproduction in Pseudomonas aeruginosa by a novel AlgW-dependent mechanism.

In Pseudomonas aeruginosa, alginate overproduction, also known as mucoidy, is negatively regulated by the transmembrane protein MucA, which sequesters the alternative sigma factor AlgU. MucA is degraded via a proteolysis pathway that frees AlgU from sequestration, activating alginate biosynthesis. Initiation of this pathway normally requires two signals: peptide sequences in unassembled outer-m...

متن کامل

Pseudomonas aeruginosa MucD regulates the alginate pathway through activation of MucA degradation via MucP proteolytic activity.

Alginate overproduction in Pseudomonas aeruginosa can be caused by the proteolysis of the anti-sigma factor MucA regulated by the AlgW protease. Here, we show that inactivation of MucD, an HtrA/DegP homolog and alginate regulator, can bypass AlgW, leading to an atypical proteolysis of MucA that is dependent on the MucP protease.

متن کامل

Different mutations in mucA gene of Pseudomonas aeruginosa mucoid strains in cystic fibrosis patients and their effect on algU gene expression.

Alginate biosynthesis in Pseudomonas aeruginosa is a highly regulated process in which algU and mucA genes are key elements. Mutations in mucA gene determine alginate operon overexpression and exopolysaccharide overproduction. In our study, 119 strains of P. aeruginosa were isolated from sputa of 96 cystic fibrosis patients and 84/119 showed nonmucoid phenotype, while 35/119 showed mucoid pheno...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 22  شماره 

صفحات  -

تاریخ انتشار 2004